
2.3 Разработка шаблона кода

После завершения этапа проектирования объектной модели, включающего

определение сущностей и установление связей между ними, была построена

схема данных, отражающая архитектуру будущей информационной системы.

Подход BCE (Boundary-Control-Entity – граница-управление-сущность)

представляет собой подход к объектному моделированию, основанный на

трехфакторном представлении классов. В правильно спроектированной

иерархии пакетов актер может взаимодействовать только с пограничными

объектами из пакета BoundaryPackage, объекты-сущности из пакета

EntityPackage могут взаимодействовать только с управляющими объектами из

ControlPackage и управляющие объекты из ControlPackage могут

взаимодействовать с объектами любого типа. Основным преимуществом

подхода BCE является группирование классов в виде иерархических уровней.

Это способствует лучшему пониманию модели и уменьшает ее сложность [8].

Пакет Entity содержит классы, отвечающие за представление данных,

которые используются в системе. В него входят сущности PotentialClients,

RecordedClients, Documents, StatusClient, ClientsHistory, Worker, CategoryClients,

представляющие данные о лидах, зарегистрированных заказчиках,

ответственных рабочих, статусов и документах, а также историю изменений. Эти

элементы являются основой хранения информации и используются для

выполнения операций бизнес-логики.

Пакет Boundary включает компоненты, которые обеспечивают внешнее

взаимодействие пользователя с системой. К ним относятся ClientPage,

отображающая информацию о лидах, ClientForm, предназначенная для

добавления новых лидов, формы для загрузки документов и страницы просмотра

детальной информации, включая историю изменений. Эти элементы реализуют

интерфейсные функции и служат точками входа для взаимодействия человека с

программным обеспечением.

Пакет Control содержит классы, реализующие бизнес-логику и

координирующие связь между пользовательскими компонентами и сущностями

данных. Среди них находятся RecordController, отвечающий за обработку форм

и сохранение данных, DocumentController, управляющий документами, а также

Manager, выполняющий отправку уведомлений менеджерам при создании

нового лида или изменении его состояния. Контроллеры являются связующим

звеном между уровнем представления и уровнем данных, обеспечивая

выполнение логики приложения.

После декомпозиции всех элементов была сформирована итоговая

диаграмма компонентов, отражающая структуру системы управления лидами и

документами заказчиков и демонстрирующая взаимодействие boundary-

компонентов, контроллеров и сущностей в едином архитектурном пространстве.

Эта интегрированная схема позволяет получить целостное представление о

функционировании системы и служит основой для дальнейшей автоматической

генерации кода и последующей программной реализации. Она представлена на

рисунке 2.7.

Рисунок 2.7 – Схема данных пакетов

Ниже представлен код С++ для Entity-класса Worker.
#pragma once

#include <string>

class Worker {

private:

 int id;

 std::string name;

 std::string phone;

public:

 Worker() : id(0) {}

 Worker(int id, const std::string& name, const std::string& phone)

 : id(id), name(name), email(email) {}

 int getId() const { return id; }

 std::string getName() const { return name; }

 std::string getPhone() const { return phone; }

 void setName(const std::string& n) { name = n; }

 void setPhone(const std::string& e) { phone = e; }

};

